Posted

Junichi Haruna (Feb 17 2026).
Abstract: Transversal Pauli Z rotations provide a natural route to fault-tolerant logical diagonal gates in quantum CSS codes, yet their capability is fundamentally constrained. In this work, we formulate the refinement problem of realizing a logical diagonal gate by a transversal implementation with a finer discrete rotation angle and show that its solvability is completely characterized by the Bockstein homomorphism in homology theory. Furthermore, we prove that the linear independence of the X-stabilizer generators together with the commutativity condition modulo a power of two ensures the existence of transversal implementations of all logical Pauli Z rotations with discrete angles in general CSS codes. Our results identify a canonical homological obstruction governing transversal implementability and provide a conceptual foundation for a formal theory of transversal structures in quantum error correction.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!