Posted

Shuo Zhou, Zhaokai Pan, Weiyuan Gong, Tongyang Li (Jan 06 2026).
Abstract: Hamiltonian simulations are key subroutines in adiabatic quantum computation, quantum control, and quantum many-body physics, where quantum dynamics often happen in the low-energy sector. In contrast to time-independent Hamiltonian simulations, a comprehensive understanding of quantum simulation algorithms for time-dependent Hamiltonians under the low-energy assumption remains limited hitherto. In this paper, we investigate how much we can improve upon the standard performance guarantee assuming the initial state is supported on a low-energy subspace. In particular, we compute the Trotter number of digital quantum simulation based on product formulas for time-dependent spin Hamiltonians under the low-energy assumption that the initial state is supported on a small number of low-energy eigenstates, and show improvements over the standard cost for simulating full unitary simulations. Technically, we derive the low-energy simulation error with commutator scaling for product formulas by leveraging adiabatic perturbation theory to analyze the time-variant energy spectrum of the underlying Hamiltonian. We further discuss the applications to simulations of non-equilibrium quantum many-body dynamics and adiabatic state preparation. Finally, we prove a lower bound of query complexity for generic time-dependent Hamiltonian simulations.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!