Carlos Ernesto Lopetegui-González, Gaël Massé, Enky Oudot, Uta Isabella Meyer, Federico Centrone, Frédéric Grosshans, Pierre-Emmanuel Emeriau, Ulysse Chabaud, Mattia Walschaers (Jan 13 2026).
Abstract: Although the original EPR paradox was formulated in terms of position and momentum, most studies of these phenomena have focused on measurement scenarios with only a discrete number of possible measurement outcomes. Here, we present a framework for studying non-locality that is agnostic to the dimension of the physical systems involved, allowing us to probe purely continuous-variable, discrete-variable, or hybrid non-locality. Our approach allows us to find the optimal Bell inequality for any given measurement scenario and quantifies the amount of non-locality that is present in measurement statistics. This formalism unifies the existing literature on continuous-variable non-locality and allows us to identify new states in which Bell non-locality can be probed through homodyne detection. Notably, we find the first example of continuous-variable non-locality that cannot be mapped to a CHSH Bell inequality. Moreover, we provide several examples of simple hybrid DV-CV entangled states that could lead to near-term violation of Bell inequalities.