Emma Rosenfeld, Craig Gidney, Gabrielle Roberts, Alexis Morvan, Nathan Lacroix, Dvir Kafri, Jeffrey Marshall, Ming Li, Volodymyr Sivak, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, et al (275) (Dec 17 2025).
Abstract: Fault-tolerant quantum computing requires a universal gate set, but the necessary non-Clifford gates represent a significant resource cost for most quantum error correction architectures. Magic state cultivation offers an efficient alternative to resource-intensive distillation protocols; however, testing the proposal's assumptions represents a challenging departure from quantum memory experiments. We present an experimental study of magic state cultivation on a superconducting quantum processor. We implement cultivation, including code-switching into a surface code, and develop a fault-tolerant measurement protocol to bound the magic state fidelity. Cultivation reduces the error by a factor of 40, with a state fidelity of 0.9999(1) (retaining 8% of attempts). Our results experimentally establish magic state cultivation as a viable solution to one of quantum computing's most significant challenges.