Friederike Butt, Lars Esser, Markus Müller (Dec 16 2025).
Abstract: Practical large-scale quantum computation requires both efficient error correction and robust implementation of logical operations. Three-dimensional (3D) color codes are a promising candidate for fault-tolerant quantum computation due to their transversal non-Clifford gates, but efficient decoding remains challenging. In this work, we extend previous decoders for two-dimensional color codes [1], which are based on the restriction of the decoding problem to a subset of the qubit lattice, to three dimensions. Including boundaries of 3D color codes, we demonstrate that the 3D restriction decoder achieves optimal scaling of the logical error rate and a threshold value of 1.55(6)% for code-capacity bit- and phase-flip noise, which is almost a factor of two higher than previously reported for this family of codes [2, 3]. We furthermore present qCodePlot3D, a Python package for visualizing 2D and 3D color codes, error configurations, and decoding paths, which supports the development and analysis of such decoders. These advancements contribute to making 3D color codes a more practical option for exploring fault-tolerant quantum computation.