Zachary P. Bradshaw, Margarite L. LaBorde, Dillon Montero (Dec 10 2025).
Abstract: Typical stabilizer codes aim to solve the general problem of fault-tolerance without regard for the structure of a specific system. By incorporating a broader representation-theoretic perspective, we provide a generalized framework that allows the code designer to take this structure into account. For any representation of a finite group, we produce a quantum code with a code space invariant under the group action, providing passive error mitigation against errors belonging to the image of the representation. Furthermore, errors outside this scope are detected and diagnosed by performing a projective measurement onto the isotypic components corresponding to irreducible representations of the chosen group, effectively generalizing syndrome extraction to symmetry-resolved quantum measurements. We show that all stabilizer codes are a special case of this construction, including qudit stabilizer codes, and show that there is a natural one logical qubit code associated to the dihedral group. Thus we provide a unifying framework for existing codes while simultaneously facilitating symmetry-aware codes tailored to specific systems.