Posted

Satvik Maurya, Thilo Maurer, Markus Bühler, Drew Vandeth, Michael E. Beverland (Nov 27 2025).
Abstract: Real-time decoding is crucial for fault-tolerant quantum computing but likely requires specialized hardware such as field-programmable gate arrays (FPGAs), whose parallelism can alter relative algorithmic performance. We analyze FPGA-tailored versions of three decoder classes for quantum low-density parity-check (qLDPC) codes: message passing, ordered statistics, and clustering. For message passing, we analyze the recently introduced Relay decoder and its FPGA implementation; for ordered statistics decoding (OSD), we introduce a filtered variant that concentrates computation on high-likelihood fault locations; and for clustering, we design an FPGA-adapted generalized union-find decoder. We design a systolic algorithm for Gaussian elimination on rank-deficient systems that runs in linear parallel time, enabling fast validity checks and local corrections in clustering and eliminating costly full-rank inversion in filtered-OSD. Despite these improvements, both remain far slower and less accurate than Relay, suggesting message passing is the most viable route to real-time qLDPC decoding.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!