Etienne Granet, Sheng-Hsuan Lin, Kevin Hémery, Reza Hagshenas, Pablo Andres-Martinez, David T. Stephen, Anthony Ransford, Jake Arkinstall, M.S. Allman, Pete Campora, Samuel F. Cooper, Robert D. Delaney, Joan M. Dreiling, Brian Estey, Caroline Figgatt, Cameron Foltz, John P. Gaebler, Alex Hall, Ali Husain, Akhil Isanaka, et al (13) (Nov 05 2025).
Abstract: The Fermi-Hubbard model is the starting point for the simulation of many strongly correlated materials, including high-temperature superconductors, whose modelling is a key motivation for the construction of quantum simulation and computing devices. However, the detection of superconducting pairing correlations has so far remained out of reach, both because of their off-diagonal character-which makes them inaccessible to local density measurements-and because of the difficulty of preparing superconducting states. Here, we report measurement of significant pairing correlations in three different regimes of Fermi-Hubbard models simulated on Quantinuumś Helios trapped-ion quantum computer. Specifically, we measure non-equilibrium pairing induced by an electromagnetic field in the half-filled square lattice model, d-wave pairing in an approximate ground state of the checkerboard Hubbard model at
1/6-doping, and s-wave pairing in a bilayer model relevant to nickelate superconductors. These results show that a quantum computer can reliably create and probe physically relevant states with superconducting pairing correlations, opening a path to the exploration of superconductivity with quantum computers.