Harry J. D. Miller (Nov 05 2025).
Abstract: In quantum information geometry, the curvature of von-Neumann entropy and relative entropy induce a natural metric on the space of mixed quantum states. Here we use this information metric to construct a random matrix ensemble for states and investigate its key statistical properties such the eigenvalue density and probability distribution of entropy. We present an algorithm for generating these entropy-based random density matrices by sampling a class of bipartite pure states, thus providing a new recipe for random state generation that differs from the well established Hilbert-Schmidt and Bures-Hall ensemble approaches. We find that a distinguishing feature of the ensemble is its larger purity and increased volume towards the boundary of full-rank states. The entropy-based ensemble can thus be used as a uninformative prior for Bayesian quantum state tomography in high purity regimes, and as a tool for quantifying typical entanglement in finite depth quantum circuits.