Posted

Markus Heinrich, Jonas Haferkamp, Ingo Roth, Jonas Helsen (Oct 29 2025).
Abstract: Until very recently, it was generally believed that the (approximate) 2-design property is strictly stronger than anti-concentration of random quantum circuits, mainly because it was shown that the latter anti-concentrate in logarithmic depth, while the former generally need linear depth circuits. This belief was disproven by recent results which show that so-called relative-error approximate unitary designs can in fact be generated in logarithmic depth, implying anti-concentration. Their result does however not apply to ordinary local random circuits, a gap which we close in this paper, at least for 2-designs. More precisely, we show that anti-concentration of local random quantum circuits already implies that they form relative-error approximate state 2-designs, making them equivalent properties for these ensembles. Our result holds more generally for any random circuit which is invariant under local (single-qubit) unitaries, independent of the architecture.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!