Yutaro Akahoshi, Riki Toshio, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii (Oct 27 2025).
Abstract: Runtime optimization of the quantum computing within a given computational resource is important to achieve practical quantum advantage. In this paper, we propose a runtime reduction protocol for the lattice surgery, which utilizes the soft information corresponding to the logical measurement error. Our proposal is a simple two-step protocol: operating the lattice surgery with the small number of syndrome measurement cycles, and reexecuting it with full syndrome measurement cycles in cases where the time-like soft information catches logical error symptoms. We firstly discuss basic features of the time-like complementary gap as the concrete example of the time-like soft information based on numerical results. Then, we show that our protocol surpasses the existing runtime reduction protocol called temporally encoded lattice surgery (TELS) for the most cases. In addition, we confirm that the combination of our protocol and the TELS protocol can reduce the runtime further, over 50% in comparison to the naive serial execution of the lattice surgery. The proposed protocol in this paper can be applied to any quantum computing architecture based on the lattice surgery, and we expect that this will be one of the fundamental building blocks of runtime optimization to achieve practical scale quantum computing.