Johannes Knörzer, Xiaoyu Liu, Benjamin F. Schiffer, Jordi Tura (Oct 20 2025).
Abstract: Distributed quantum information processing seeks to overcome the scalability limitations of monolithic quantum devices by interconnecting multiple quantum processing nodes via classical and quantum communication. This approach extends the capabilities of individual devices, enabling access to larger problem instances and novel algorithmic techniques. Beyond increasing qubit counts, it also enables qualitatively new capabilities, such as joint measurements on multiple copies of high-dimensional quantum states. The distinction between single-copy and multi-copy access reveals important differences in task complexity and helps identify which computational problems stand to benefit from distributed quantum resources. At the same time, it highlights trade-offs between classical and quantum communication models and the practical challenges involved in realizing them experimentally. In this review, we contextualize recent developments by surveying the theoretical foundations of distributed quantum protocols and examining the experimental platforms and algorithmic applications that realize them in practice.