Posted

Rajath Radhakrishnan, Adar Sharon, Nathanan Tantivasadakarn (Oct 13 2025).
Abstract: Dynamical stabilizer codes (DSCs) have recently emerged as a powerful generalization of static stabilizer codes for quantum error correction, replacing a fixed stabilizer group with a sequence of non-commuting measurements. This dynamical structure unlocks new possibilities for fault tolerance but also introduces new challenges, as errors must now be tracked across both space and time. In this work, we provide a physical and topological understanding of DSCs by establishing a correspondence between qudit Pauli measurements and non-invertible symmetries in 4+1-dimensional 2-form gauge theories. Sequences of measurements in a DSC are mapped to a fusion of the operators implementing these non-invertible symmetries. We show that the error detectors of a DSC correspond to endable surface operators in the gauge theory, whose endpoints define line operators, and that detectable errors are precisely those surface operators that braid non-trivially with these lines. Finally, we demonstrate how this framework naturally recovers the spacetime stabilizer code associated with a DSC.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!