Posted

Aram W. Harrow, Angus Lowe, Freek Witteveen (Oct 10 2025).
Abstract: A fundamental task in quantum information is to approximate a pure quantum state in terms of sparse states or, for a bipartite system, states of bounded Schmidt rank. The optimal deterministic approximation in each case is straightforward, and maximizes the fidelity: keep the largest entries or singular values. On the other hand, random mixtures of sparse states can achieve quadratically improved trace distances, and yield nontrivial bounds on other distance measures like the robustness. In this work, we give efficient algorithms for finding mixtures of sparse states that optimally approximate a given pure state in either trace distance or robustness. These algorithms also yield descriptions of efficiently samplable ensembles of sparse, or less-entangled, states that correspond to these optimal mixed approximations. This can be used for the truncation step of algorithms for matrix product states, improving their accuracy while using no extra memory, and we demonstrate this improvement numerically. Our proofs use basic facts about convex optimization and zero-sum games, as well as rigorous guarantees for computing maximum-entropy distributions.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!