Posted

Thiago Bergamaschi, Tony Metger, Thomas Vidick, Tina Zhang (Oct 03 2025).
Abstract: The quantum PCP conjecture asks whether it is QMA-hard to distinguish between high- and low-energy Hamiltonians even when the gap between "high" and "low" energy is large (constant). A natural proof strategy is gap amplification: start from the fact that high- and low-energy Hamiltonians are hard to distinguish if the gap is small (inverse polynomial) and amplify the Hamiltonians to increase the energy gap while preserving hardness. Such a gap amplification procedure is at the heart of Dinur's proof of the classical PCP theorem. In this work, following Dinur's model, we introduce a new quantum gap amplification procedure for Hamiltonians which uses random walks on expander graphs to derandomise (subsample the terms of) the tensor product amplification of a Hamiltonian. Curiously, our analysis relies on a new technique inspired by quantum de Finetti theorems, which have previously been used to rule out certain approaches to the quantum PCP conjecture.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!