Posted

Francesco Anna Mele, Ludovico Lami (Oct 07 2025).
Abstract: Quantum data hiding is the existence of pairs of bipartite quantum states that are (almost) perfectly distinguishable with global measurements, yet close to indistinguishable when only measurements implementable with local operations and classical communication are allowed. Remarkably, data hiding states can also be chosen to be separable, meaning that secrets can be hidden using no entanglement that are almost irretrievable without entanglement -- this is sometimes called `nonlocality without entanglement'. Essentially two families of data hiding states were known prior to this work: Werner states and random states. Hiding Werner states can be made either separable or globally perfectly orthogonal, but not both -- separability comes at the price of orthogonality being only approximate. Random states can hide many more bits, but they are typically entangled and again only approximately orthogonal. In this paper, we present an explicit construction of novel group-symmetric data hiding states that are simultaneously separable, perfectly orthogonal, and even invariant under partial transpose, thus exhibiting the phenomenon of nonlocality without entanglement to the utmost extent. Our analysis leverages novel applications of numerical analysis tools to study convex optimisation problems in quantum information theory, potentially offering technical insights that extend beyond this work.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!