Posted

Kemal Aziz, Haining Pan, Michael J. Gullans, J. H. Pixley (Aug 29 2025).
Abstract: We develop classical simulation algorithms for adaptive quantum circuits that produce states with low levels of ``magic'' (i.e., non-stabilizerness). These algorithms are particularly well-suited to circuits with high rates of Pauli measurements, such as those encountered in quantum error correction and monitored quantum circuits. The measurements serve to limit the buildup of magic induced by non-Clifford operations arising from generic noise processes or unitary gates, respectively. Our algorithms also allow a systematic truncation procedure to achieve approximate simulation. To benchmark our approach, we study the dynamics of all-to-all monitored quantum circuits with a sub-extensive rate of TT-gates per unit of circuit depth, where we can simulate previously inaccessible system sizes and depths. We characterize measurement-induced phase transitions in the output wavefunction, including in the entanglement, purification, and magic. We outline the utility of our algorithms to simulate dynamics with low magic and high entanglement, complementary to the leading matrix-product state approaches.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!