Posted

Yue Wu, Binghong Li, Kathleen Chang, Shruti Puri, Lin Zhong (Aug 08 2025).
Abstract: Fast and accurate quantum error correction (QEC) decoding is crucial for scalable fault-tolerant quantum computation. Most-Likely-Error (MLE) decoding, while being near-optimal, is intractable on general quantum Low-Density Parity-Check (qLDPC) codes and typically relies on approximation and heuristics. We propose HyperBlossom, a unified framework that formulates MLE decoding as a Minimum-Weight Parity Factor (MWPF) problem and generalizes the blossom algorithm to hypergraphs via a similar primal-dual linear programming model with certifiable proximity bounds. HyperBlossom unifies all the existing graph-based decoders like (Hypergraph) Union-Find decoders and Minimum-Weight Perfect Matching (MWPM) decoder, thus bridging the gap between heuristic and certifying decoders. We implement HyperBlossom in software, namely Hyperion. Hyperion achieves a 4.8x lower logical error rate compared to the MWPM decoder on the distance-11 surface code and 1.6x lower logical error rate compared to a fine-tuned BPOSD decoder on the [[90,8,10]][[90, 8, 10]] bivariate bicycle code under code-capacity noise. It also achieves an almost-linear average runtime scaling on both the surface code and the color code, with numerical results up to sufficiently large code distances of 99 and 31 for code-capacity noise and circuit-level noise, respectively.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!