Matteo Votto, Marko Ljubotina, Cécilia Lancien, J. Ignacio Cirac, Peter Zoller, Maksym Serbyn, Lorenzo Piroli, Benoît Vermersch (Jul 18 2025).
Abstract: We present and test a protocol to learn the matrix-product operator (MPO) representation of an experimentally prepared quantum state. The protocol takes as an input classical shadows corresponding to local randomized measurements, and outputs the tensors of a MPO which maximizes a suitably-defined fidelity with the experimental state. The tensor optimization is carried out sequentially, similarly to the well-known density matrix renormalization group algorithm. Our approach is provably efficient under certain technical conditions which are expected to be met in short-range correlated states and in typical noisy experimental settings. Under the same conditions, we also provide an efficient scheme to estimate fidelities between the learned and the experimental states. We experimentally demonstrate our protocol by learning entangled quantum states of up to
N=96 qubits in a superconducting quantum processor. Our method upgrades classical shadows to large-scale quantum computation and simulation experiments.