Posted

Dolev Bluvstein, Alexandra A. Geim, Sophie H. Li, Simon J. Evered, J. Pablo Bonilla Ataides, Gefen Baranes, Andi Gu, Tom Manovitz, Muqing Xu, Marcin Kalinowski, Shayan Majidy, Christian Kokail, Nishad Maskara, Elias C. Trapp, Luke M. Stewart, Simon Hollerith, Hengyun Zhou, Michael J. Gullans, Susanne F. Yelin, Markus Greiner, et al (3) (Jun 26 2025).
Abstract: Quantum error correction (QEC) is believed to be essential for the realization of large-scale quantum computers. However, due to the complexity of operating on the encoded `logical' qubits, understanding the physical principles for building fault-tolerant quantum devices and combining them into efficient architectures is an outstanding scientific challenge. Here we utilize reconfigurable arrays of up to 448 neutral atoms to implement all key elements of a universal, fault-tolerant quantum processing architecture and experimentally explore their underlying working mechanisms. We first employ surface codes to study how repeated QEC suppresses errors, demonstrating 2.14(13)x below-threshold performance in a four-round characterization circuit by leveraging atom loss detection and machine learning decoding. We then investigate logical entanglement using transversal gates and lattice surgery, and extend it to universal logic through transversal teleportation with 3D [[15,1,3]] codes, enabling arbitrary-angle synthesis with logarithmic overhead. Finally, we develop mid-circuit qubit re-use, increasing experimental cycle rates by two orders of magnitude and enabling deep-circuit protocols with dozens of logical qubits and hundreds of logical teleportations with [[7,1,3]] and high-rate [[16,6,4]] codes while maintaining constant internal entropy. Our experiments reveal key principles for efficient architecture design, involving the interplay between quantum logic and entropy removal, judiciously using physical entanglement in logic gates and magic state generation, and leveraging teleportations for universality and physical qubit reset. These results establish foundations for scalable, universal error-corrected processing and its practical implementation with neutral atom systems.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!