Giovanni Acampora, Andris Ambainis, Natalia Ares, Leonardo Banchi, Pallavi Bhardwaj, Daniele Binosi, G. Andrew D. Briggs, Tommaso Calarco, Vedran Dunjko, Jens Eisert, Olivier Ezratty, Paul Erker, Federico Fedele, Elies Gil-Fuster, Martin Gärttner, Mats Granath, Markus Heyl, Iordanis Kerenidis, Matthias Klusch, Anton Frisk Kockum, et al (18) (Jun 02 2025).
Abstract: This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.