Dong Yuan, Chao Yin, T. C. Mooney, Christopher L. Baldwin, Andrew M. Childs, Alexey V. Gorshkov (May 27 2025).
Abstract: The speed of information propagation in long-range interacting quantum systems is limited by Lieb-Robinson-type bounds, whose tightness can be established by finding specific quantum state-transfer protocols. Previous works have given quantum state-transfer protocols that saturate the corresponding Lieb-Robinson bounds using time-dependent Hamiltonians. Are speed limits for quantum information propagation different for time-independent Hamiltonians? In a step towards addressing this question, we present and analyze two optimal time-independent state-transfer protocols for free-particle systems, which utilize continuous-time single-particle quantum walks with hopping strength decaying as a power law. We rigorously prove and numerically confirm that our protocols achieve quantum state transfer, with controllable error over an arbitrarily long distance in any spatial dimension, at the speed limits set by the free-particle Lieb-Robinson bounds. This shows that time independence does not limit information flow for long-range free-particle Hamiltonians.