Posted

Pei-Kai Tsai, Shruti Puri (Jun 05 2025).
Abstract: The surface code is a promising candidate for fault-tolerant quantum computation and has been implemented in many quantum hardware platforms. In this work, we propose a new non-local unitary circuit to encode a surface code state based on a code conversion between rotated and regular surface codes, which halves the gate count of the fastest encoder known previously. While the unitary encoders can be used to increase the code distance, the fault-distance remains fixed. Nonetheless, they can be used for space-time efficient realization of eigenstates of the surface code operators that can't be easily accessed transversally such as the Pauli Y-eignestate and Clifford eigenstates. It may be expected that error propagation in the non-local circuit will make decoding more challenging compared to local unitary encoding circuits. However, we find this not to be the case and that conventional matching decoders can be effectively used. Furthermore, we perform numerical simulations to benchmark the performance of our encoder against a previous local unitary encoder and the conventional stabilizer-measurement based encoder for preparing the Pauli Y-eigenstate and find that our encoder can outperform these in experimentally relevant noise regimes. Therefore, our encoder provides practical advantage in platforms where non-local interactions are available such as neutral atoms and trapped ions.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!