Roland C. Farrell, Nikita A. Zemlevskiy, Marc Illa, John Preskill (May 07 2025).
Abstract: High-energy particle collisions can convert energy into matter through the inelastic production of new particles. Quantum computers are an ideal platform for simulating the out-of-equilibrium dynamics of the collision and the formation of the subsequent many-particle state. In this work, evidence for inelastic particle production is observed in one-dimensional Ising field theory using IBM's quantum computers. The scattering experiment is performed on 100 qubits of ibm_marrakesh and uses up to 6,412 two-qubit gates to access the post-collision dynamics. Integral to these simulations is a new quantum algorithm for preparing the initial state (wavepackets) of a quantum field theory scattering simulation. This method efficiently prepares wavepackets by extending recent protocols for creating W states with mid-circuit measurement and feedforward. The required circuit depth is independent of wavepacket size and spatial dimension, representing a superexponential improvement over previous methods. Our wavepacket preparation algorithm can be applied to a wide range of lattice models and is demonstrated in one-dimensional Ising field theory, scalar field theory, the Schwinger model, and two-dimensional Ising field theory.