Rhea Alexander (May 02 2025).
Abstract: Transversal encoded gatesets are highly desirable for fault tolerant quantum computing. However, a quantum error correcting code which exactly corrects for local erasure noise and supports a universal set of transversal gates is ruled out by the Eastin-Knill theorem. Here we provide a new approximate Eastin-Knill theorem for the single-shot regime when we allow for some probability of error in the decoding. In particular, we show that a quantum error correcting code can support a universal set of transversal gates and approximately correct for local erasure if and only if the conditional min-entropy of the Choi state of the encoding and noise channel is upper bounded by a simple function of the worst-case error probability. Our no-go theorem can be computed by solving a semidefinite program, and, in the spirit of the original Eastin-Knill theorem, is formulated in terms of a condition that is both necessary and sufficient, ensuring achievability whenever it is passed. As an example, we find that with
n=100 physical qutrits we can encode
k=1 logical qubit in the
W-state code, which admits a universal transversal set of gates and corrects for single subsystem erasure with error probability of
ε=0.005. To establish our no-go result, we leverage tools from the resource theory of asymmetry, where, in the single-shot regime, a single (output state-dependent) resource monotone governs all state purifications.