Posted

Shraddha Singh, Baptiste Royer, Steven M. Girvin (Apr 29 2025).
Abstract: Robust quantum control is crucial for achieving operations below the quantum error correction threshold. Quantum Signal Processing (QSP) transforms a unitary parameterized by θ\theta into one governed by a polynomial function f(θ)f(\theta), a feature that underpins key quantum algorithms. Originating from composite pulse techniques in NMR, QSP enhances robustness against systematic control errors. We extend QSP to a new class, non-abelian QSP, which utilizes non-commuting control parameters, θ^1,θ^2,\hat\theta_1, \hat\theta_2, \dots, representing quantum harmonic oscillator positions and momenta. We introduce a fundamental non-abelian composite pulse sequence, the Gaussian-Controlled-Rotation (GCR), for entangling and disentangling a qubit from an oscillator. This sequence achieves at least a 4.5×4.5\times speedup compared to the state-of-the-art abelian QSP pulse BB1, while maintaining performance. Though quantum fluctuations in the control parameters are unavoidable, the richer commutator algebra of non-abelian QSP enhances its power and efficiency. Non-abelian QSP represents the highest tier of QSP variants tailored for hybrid oscillator-qubit architectures, unlocking new possibilities for such systems. We demonstrate the utility of GCR in high-fidelity preparation of continuous-variable oscillator states, including squeezed, Fock, cat, and GKP states, using fully analytical schemes that match numerically optimized methods in fidelity and depth while enabling mid-circuit error detection. Furthermore, we propose a high-fidelity QSP-based end-of-the-line GKP readout and a measurement-free, error-corrected gate teleportation protocol for logical operations on GKP bosonic qudits, bridging the gap between idealized theoretical and experimentally realistic versions of the GKP code. Finally, we showcase a GCR-based phase estimation algorithm for oscillator-based quantum computing.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!