Posted

Thorsten Koch, David E. Bernal Neira, Ying Chen, Giorgio Cortiana, Daniel J. Egger, Raoul Heese, Narendra N. Hegade, Alejandro Gomez Cadavid, Rhea Huang, Toshinari Itoko, Thomas Kleinert, Pedro Maciel Xavier, Naeimeh Mohseni, Jhon A. Montanez-Barrera, Koji Nakano, Giacomo Nannicini, Corey O'Meara, Justin Pauckert, Manuel Proissl, Anurag Ramesh, et al (7) (Apr 08 2025).
Abstract: Through recent progress in hardware development, quantum computers have advanced to the point where benchmarking of (heuristic) quantum algorithms at scale is within reach. Particularly in combinatorial optimization -- where most algorithms are heuristics -- it is key to empirically analyze their performance on hardware and track progress towards quantum advantage. To this extent, we present ten optimization problem classes that are difficult for existing classical algorithms and can (mostly) be linked to practically-relevant applications, with the goal to enable systematic, fair, and comparable benchmarks for quantum optimization methods. Further, we introduce the Quantum Optimization Benchmark Library (QOBLIB) where the problem instances and solution track records can be found. The individual properties of the problem classes vary in terms of objective and variable type, coefficient ranges, and density. Crucially, they all become challenging for established classical methods already at system sizes ranging from less than 100 to, at most, an order of 100,000 decision variables, allowing to approach them with today's quantum computers. We reference the results from state-of-the-art solvers for instances from all problem classes and demonstrate exemplary baseline results obtained with quantum solvers for selected problems. The baseline results illustrate a standardized form to present benchmarking solutions, which has been designed to ensure comparability of the used methods, reproducibility of the respective results, and trackability of algorithmic and hardware improvements over time. We encourage the optimization community to explore the performance of available classical or quantum algorithms and hardware platforms with the benchmarking problem instances presented in this work toward demonstrating quantum advantage in optimization.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!