Omar Amer, Shouvanik Chakrabarti, Kaushik Chakraborty, Shaltiel Eloul, Niraj Kumar, Charles Lim, Minzhao Liu, Pradeep Niroula, Yash Satsangi, Ruslan Shaydulin, Marco Pistoia (Mar 26 2025).
Abstract: Certified randomness can be generated with untrusted remote quantum computers using multiple known protocols, one of which has been recently realized experimentally. Unlike the randomness sources accessible on today's classical computers, the output of these protocols can be certified to be random under certain computational hardness assumptions, with no trust required in the hardware generating the randomness. In this perspective, we explore real-world applications for which the use of certified randomness protocols may lead to improved security and fairness. We identify promising applications in areas including cryptography, differential privacy, financial markets, and blockchain. Through this initial exploration, we hope to shed light on potential applications of certified randomness.