Posted

Laleh Aghababaie Beni, Oscar Higgott, Noah Shutty (Mar 17 2025).
Abstract: Tesseract is a Most-Likely Error decoder designed for low-density-parity-check quantum error-correcting codes. Tesseract conducts a search through a graph on the set of all subsets of errors to find the lowest cost subset of errors consistent with the input syndrome. Although this graph is exponentially large, the search can be made efficient in practice for random errors using AA^* search technique along with a few pruning heuristics. We show through benchmark circuits for surface, color, and bivariate-bicycle codes that Tesseract is significantly faster than integer programming-based decoders while retaining comparable accuracy at moderate physical error rates. We also find that Tesseract can decode transversal CNOT protocols for surface codes on neutral atom quantum computers. Finally, we compare surface code and bivariate bicycle code circuits, finding that the [[144,12,12]] bivariate bicycle code is 14×14\times to 19×19\times more efficient than surface codes using our most-likely error decoding, whereas using correlated matching and BP+OSD decoders would have implied only a 10×10\times improvement. Assuming instead that long-range couplers are 10×10\times noisier, the improvement drops to around 4×4\times using Tesseract or 2×2\times using correlated matching and BP+OSD.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!