Yukun Zhang, Xiaoming Zhang, Jinzhao Sun, Heng Lin, Yifei Huang, Dingshun Lv, Xiao Yuan (Feb 05 2025).
Abstract: Solving quantum molecular systems presents a significant challenge for classical computation. The advent of early fault-tolerant quantum computing (EFTQC) devices offers a promising avenue to address these challenges, leveraging advanced quantum algorithms with reduced hardware requirements. This review surveys the latest developments in EFTQC and fully fault-tolerant quantum computing (FFTQC) algorithms for quantum molecular systems, covering encoding schemes, advanced Hamiltonian simulation techniques, and ground-state energy estimation methods. We highlight recent progress in overcoming practical barriers, such as reducing circuit depth and minimizing the use of ancillary qubits. Special attention is given to the potential quantum advantages achievable through these algorithms, as well as the limitations imposed by dequantization and classical simulation techniques. The review concludes with a discussion of future directions, emphasizing the need for optimized algorithms and experimental validation to bridge the gap between theoretical developments and practical implementation in EFTQC and FFTQC for quantum molecular systems.