Posted

Nathan Claudet, Simon Perdrix (Feb 11 2025).
Abstract: We describe an algorithm with quasi-polynomial runtime nlog2(n)+O(1)n^{\log_2(n)+O(1)} for deciding local unitary (LU) equivalence of graph states. The algorithm builds on a recent graphical characterisation of LU-equivalence via generalised local complementation. By first transforming the corresponding graphs into a standard form using usual local complementations, LU-equivalence reduces to the existence of a single generalised local complementation that maps one graph to the other. We crucially demonstrate that this reduces to solving a system of quasi-polynomially many linear equations, avoiding an exponential blow-up. As a byproduct, we generalise Bouchet's algorithm for deciding local Clifford (LC) equivalence of graph states by allowing the addition of arbitrary linear constraints. We also improve existing bounds on the size of graph states that are LU- but not LC-equivalent. While the smallest known examples involve 27 qubits, and it is established that no such examples exist for up to 8 qubits, we refine this bound by proving that LU- and LC-equivalence coincide for graph states involving up to 19 qubits.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!