Bartosz Regula, Ludovico Lami, Nilanjana Datta (Jan 23 2025).
Abstract: The precise one-shot characterisation of operational tasks in classical and quantum information theory relies on different forms of smooth entropic quantities. A particularly important connection is between the hypothesis testing relative entropy and the smoothed max-relative entropy, which together govern many operational settings. We first strengthen this connection into a type of equivalence: we show that the hypothesis testing relative entropy is equivalent to a variant of the smooth max-relative entropy based on the information spectrum divergence, which can be alternatively understood as a measured smooth max-relative entropy. Furthermore, we improve a fundamental lemma due to Datta and Renner that connects the different variants of the smoothed max-relative entropy, introducing a modified proof technique based on matrix geometric means and a tightened gentle measurement lemma. We use the unveiled connections and tools to strictly improve on previously known one-shot bounds and duality relations between the smooth max-relative entropy and the hypothesis testing relative entropy, sharpening also bounds that connect the max-relative entropy with Rényi divergences.