Posted

Bartosz Regula, Ludovico Lami, Nilanjana Datta (Jan 23 2025).
Abstract: The precise one-shot characterisation of operational tasks in classical and quantum information theory relies on different forms of smooth entropic quantities. A particularly important connection is between the hypothesis testing relative entropy and the smoothed max-relative entropy, which together govern many operational settings. We first strengthen this connection into a type of equivalence: we show that the hypothesis testing relative entropy is equivalent to a variant of the smooth max-relative entropy based on the information spectrum divergence, which can be alternatively understood as a measured smooth max-relative entropy. Furthermore, we improve a fundamental lemma due to Datta and Renner that connects the different variants of the smoothed max-relative entropy, introducing a modified proof technique based on matrix geometric means and a tightened gentle measurement lemma. We use the unveiled connections and tools to strictly improve on previously known one-shot bounds and duality relations between the smooth max-relative entropy and the hypothesis testing relative entropy, sharpening also bounds that connect the max-relative entropy with Rényi divergences.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!