Richard R. Allen, Francisco Machado, Isaac L. Chuang, Hsin-Yuan Huang, Soonwon Choi (Jan 15 2025).
Abstract: Quantum computing and quantum sensing represent two distinct frontiers of quantum information science. In this work, we harness quantum computing to solve a fundamental and practically important sensing problem: the detection of weak oscillating fields with unknown strength and frequency. We present a quantum computing enhanced sensing protocol that outperforms all existing approaches. Furthermore, we prove our approach is optimal by establishing the Grover-Heisenberg limit -- a fundamental lower bound on the minimum sensing time. The key idea is to robustly digitize the continuous, analog signal into a discrete operation, which is then integrated into a quantum algorithm. Our metrological gain originates from quantum computation, distinguishing our protocol from conventional sensing approaches. Indeed, we prove that broad classes of protocols based on quantum Fisher information, finite-lifetime quantum memory, or classical signal processing are strictly less powerful. Our protocol is compatible with multiple experimental platforms. We propose and analyze a proof-of-principle experiment using nitrogen-vacancy centers, where meaningful improvements are achievable using current technology. This work establishes quantum computation as a powerful new resource for advancing sensing capabilities.