Massimiliano Incudini, Casper Gyurik, Riccardo Molteni, Vedran Dunjko (Dec 20 2024).
Abstract: Determining whether an abstract simplicial complex, a discrete object often approximating a manifold, contains multi-dimensional holes is a task deeply connected to quantum mechanics and proven to be QMA1-hard by Crichigno and Kohler. This task can be expressed in linear algebraic terms, equivalent to testing the non-triviality of the kernel of an operator known as the Combinatorial Laplacian. In this work, we explore the similarities between abstract simplicial complexes and signed or unsigned graphs, using them to map the spectral properties of the Combinatorial Laplacian to those of signed and unsigned graph Laplacians. We prove that our transformations preserve efficient sparse access to these Laplacian operators. Consequently, we show that key spectral properties, such as testing the presence of balanced components in signed graphs and the bipartite components in unsigned graphs, are QMA1-hard. These properties play a paramount role in network science. The hardness of the bipartite test is relevant in quantum Hamiltonian complexity, as another example of testing properties related to the eigenspace of a stoquastic Hamiltonians are quantumly hard in the sparse input model for the graph.