Posted

Marek Gluza, Jeongrak Son, Bi Hong Tiang, Yudai Suzuki, Zoë Holmes, Nelly H. Y. Ng (Dec 09 2024).
Abstract: Efficiently preparing approximate ground-states of large, strongly correlated systems on quantum hardware is challenging and yet nature is innately adept at this. This has motivated the study of thermodynamically inspired approaches to ground-state preparation that aim to replicate cooling processes via imaginary-time evolution. However, synthesizing quantum circuits that efficiently implement imaginary-time evolution is itself difficult, with prior proposals generally adopting heuristic variational approaches or using deep block encodings. Here, we use the insight that quantum imaginary-time evolution is a solution of Brockett's double-bracket flow and synthesize circuits that implement double-bracket flows coherently on the quantum computer. We prove that our Double-Bracket Quantum Imaginary-Time Evolution (DB-QITE) algorithm inherits the cooling guarantees of imaginary-time evolution. Concretely, each step is guaranteed to i) decrease the energy of an initial approximate ground-state by an amount proportion to the energy fluctuations of the initial state and ii) increase the fidelity with the ground-state. Thus DB-QITE provides a means to systematically improve the approximation of a ground-state using shallow circuits.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!