Posted

Keyi Yin, Xiang Fang, Jixuan Ruan, Hezi Zhang, Dean Tullsen, Andrew Sornborger, Chenxu Liu, Ang Li, Travis Humble, Yufei Ding (Dec 05 2024).
Abstract: Quantum error correction (QEC) is critical for scalable and reliable quantum computing, but existing solutions, such as surface codes, incur significant qubit overhead. Quantum low-density parity check (qLDPC) codes have recently emerged as a promising alternative, requiring fewer qubits. However, the lack of efficient decoders remains a major barrier to their practical implementation. In this work, we introduce SymBreak, a novel decoder for qLDPC codes that adaptively modifies the decoding graph to improve the performance of state-of-the-art belief propagation (BP) decoders. Our key contribution is identifying quantum degeneracy as a root cause of the convergence issues often encountered in BP decoding of quantum LDPC codes. We propose a solution that mitigates this issue at the decoding graph level, achieving both fast and accurate decoding. Our results demonstrate that SymBreak outperforms BP and BP+OSD-a more complex variant of BP-with a 16.17×16.17\times reduction in logical error rate compared to BP and 3.23×3.23\times compared to BP+OSD across various qLDPC code families. With only an 18.9718.97% time overhead compared to BP, SymBreak provides significantly faster decoding times than BP+OSD, representing a major advancement in efficient and accurate decoding for qLDPC-based QEC architectures.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!