Posted

Berta Casas, Xavier Bonet-Monroig, Adrián Pérez-Salinas (Dec 02 2024).
Abstract: Quantum machine learning (QML) has surged as a prominent area of research with the objective to go beyond the capabilities of classical machine learning models. A critical aspect of any learning task is the process of data embedding, which directly impacts model performance. Poorly designed data-embedding strategies can significantly impact the success of a learning task. Despite its importance, rigorous analyses of data-embedding effects are limited, leaving many cases without effective assessment methods. In this work, we introduce a metric for binary classification tasks, the class margin, by merging the concepts of average randomness and classification margin. This metric analytically connects data-induced randomness with classification accuracy for a given data-embedding map. We benchmark a range of data-embedding strategies through class margin, demonstrating that data-induced randomness imposes a limit on classification performance. We expect this work to provide a new approach to evaluate QML models by their data-embedding processes, addressing gaps left by existing analytical tools.

Order by:

Want to join this discussion?

Join our community today and start discussing with our members by participating in exciting events, competitions, and challenges. Sign up now to engage with quantum experts!